Federated learning (FL) is a promising distributed framework for collaborative artificial intelligence model training while protecting user privacy. A bootstrapping component that has attracted significant research attention is the design of incentive mechanism to stimulate user collaboration in FL. The majority of works adopt a broker-centric approach to help the central operator to attract participants and further obtain a well-trained model. Few works consider forging participant-centric collaboration among participants to pursue an FL model for their common interests, which induces dramatic differences in incentive mechanism design from the broker-centric FL. To coordinate the selfish and heterogeneous participants, we propose a novel analytic framework for incentivizing effective and efficient collaborations for participant-centric FL. Specifically, we respectively propose two novel game models for contribution-oblivious FL (COFL) and contribution-aware FL (CAFL), where the latter one implements a minimum contribution threshold mechanism. We further analyze the uniqueness and existence for Nash equilibrium of both COFL and CAFL games and design efficient algorithms to achieve equilibrium solutions. Extensive performance evaluations show that there exists free-riding phenomenon in COFL, which can be greatly alleviated through the adoption of CAFL model with the optimized minimum threshold.


翻译:联邦学习(FL)是合作人工智能模式培训的一个很有希望的分布式框架,它既保护用户隐私,又保护用户隐私。一个引起大量研究注意的辅助性组成部分是设计奖励机制以促进FL用户合作的激励机制。大多数著作都采用了中介中心经营人中心吸引参与者和进一步获得良好培训模式。很少有工作考虑在参与者之间建立参与者中心协作模式,以追求FL的共同利益,这在奖励机制设计方面引起与中介中心FL的显著差异。为了协调自私和多样化的参与者,我们提出了一个新颖的分析框架,以激励以参与者为中心的FL进行有成效和高效率的合作。具体地说,我们分别提出了两种新的游戏模式,即:即Obli FL(COFL)和CAFL(CFL),后者实行最低贡献门槛机制。我们进一步分析CFL和CAL游戏的纳什平衡的独特性和存在,并设计实现平衡解决方案的有效算法。广泛的绩效评估表明,COFLLL存在自由约束现象,通过采用CAFLA最低门槛可以大大减缓。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
0+阅读 · 2022年9月16日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员