In this paper, we explore a process called neural teleportation, a mathematical consequence of applying quiver representation theory to neural networks. Neural teleportation "teleports" a network to a new position in the weight space and preserves its function. This phenomenon comes directly from the definitions of representation theory applied to neural networks and it turns out to be a very simple operation that has remarkable properties. We shed light on surprising and counter-intuitive consequences neural teleportation has on the loss landscape. In particular, we show that teleportation can be used to explore loss level curves, that it changes the local loss landscape, sharpens global minima and boosts back-propagated gradients at any moment during the learning process. Our results can be reproduced with the code available here: https://github.com/vitalab/neuralteleportation
翻译:在本文中,我们探索了一个名为神经远程传输的过程,这是一个在神经网络中应用快速代表理论的数学结果。神经远程传输“电子ports”是一个网络在重量空间中的新位置并保留其功能。这一现象直接来自神经网络中应用的表述理论定义,它证明是一个非常简单的操作,具有显著的特性。我们阐明了损失地貌上惊人和反直觉后果神经远程传输的特征。特别是,我们表明,远程传输可以用来探索损失水平曲线,在学习过程中随时改变当地损失地貌,使全球迷你变亮,并推进反向推进的梯度。我们的结果可以用这里可用的代码复制:https://github.com/vitalab/neurateleteportation。我们的结果可以在此复制:https://github.vitarb.com/vitalab/neurateleportation。