We propose Anticipative Video Transformer (AVT), an end-to-end attention-based video modeling architecture that attends to the previously observed video in order to anticipate future actions. We train the model jointly to predict the next action in a video sequence, while also learning frame feature encoders that are predictive of successive future frames' features. Compared to existing temporal aggregation strategies, AVT has the advantage of both maintaining the sequential progression of observed actions while still capturing long-range dependencies--both critical for the anticipation task. Through extensive experiments, we show that AVT obtains the best reported performance on four popular action anticipation benchmarks: EpicKitchens-55, EpicKitchens-100, EGTEA Gaze+, and 50-Salads; and it wins first place in the EpicKitchens-100 CVPR'21 challenge.


翻译:我们提出预期性视频变换器(AVT),这是一个端到端关注的视频建模结构,关注以前观察到的视频,以便预测未来的行动。我们共同培训模型,以预测视频序列中的下一步行动,同时学习可以预测未来框架特征的框架特征编码器。与现有的时间汇总战略相比,AVT的优势是既保持所观察到的行动的顺序发展,同时又仍然捕捉对预期任务至关重要的远程依赖性。通过广泛的实验,我们显示AVT在四种大众行动预期基准(EpicKitchens-55、EpicKitchens-100、EGTEA Gaze+和50-Salads)上取得了所报告的最佳表现:EpicKitchens-100、EGTEA Gaze+和50-Salads;它赢得了EpicKitchens-100 CVPR'21挑战中的第一位。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
22+阅读 · 2021年9月20日
专知会员服务
39+阅读 · 2020年9月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
已删除
将门创投
6+阅读 · 2019年11月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
7+阅读 · 2021年6月21日
Arxiv
17+阅读 · 2021年3月29日
Semantic Grouping Network for Video Captioning
Arxiv
3+阅读 · 2021年2月3日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
7+阅读 · 2018年4月24日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关论文
Arxiv
7+阅读 · 2021年6月21日
Arxiv
17+阅读 · 2021年3月29日
Semantic Grouping Network for Video Captioning
Arxiv
3+阅读 · 2021年2月3日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
7+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员