Becoming a (super) hero is almost every kid's dream. During their sheltered childhood, they do whatever it takes to grow up to be one. Work hard, play hard -- all day long. But as they're getting older, distractions are more and more likely to occur. They're getting off track. They start discovering what is feared as simple math. Finally, they end up as a researcher, writing boring, non-impressive papers all day long because they only rely on simple mathematics. No top-tier conferences, no respect, no groupies. Life's over. To finally put an end to this tragedy, we propose a fundamentally new algorithm, dubbed zero2hero, that turns every research paper into a scientific masterpiece. Given a LaTeX document containing ridiculously simple math, based on next-generation large language models, our system automatically over-complicates every single equation so that no one, including yourself, is able to understand what the hell is going on. Future reviewers will be blown away by the complexity of your equations, immediately leading to acceptance. zero2hero gets you back on track, because you deserve to be a hero$^{\text{TM}}$. Code leaked at \url{https://github.com/mweiherer/zero2hero}.


翻译:成为超级英雄几乎是每个孩子的梦想。在他们保护的童年时期,他们为了长大成为一个超级英雄而不遗余力。日复一日,勤奋工作,尽情玩耍。但随着年龄的增长,分心的事情越来越多。 他们开始发现被视为简单数学的事情。最终,他们成为研究人员,整天写着无聊,没什么吸引力的论文,因为他们只依赖简单的数学。 没有一流的会议,没有尊重,没有粉丝。生活结束了。为了最终结束这场悲剧,我们提出了一种全新的算法,称为 zero2hero,它可以将每篇研究论文变成一部科学杰作。 我们的系统基于下一代大语言模型,可以处理 LaTex 文档,其中包含荒谬简单的数学,自动使每个方程变得异常复杂,以至于没有人,包括你自己,能够理解到底在发生什么。未来的审稿人将被你的方程式的复杂性所惊讶,立即导致接受。zero2hero 可以让你重新回到正确的轨道上,因为你应该成为英雄。 代码泄露于\url{ https://github.com/mweiherer/zero2hero }。

0
下载
关闭预览

相关内容

数学是关于数量、结构、变化等主题的探索。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
48+阅读 · 2021年11月15日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月20日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
48+阅读 · 2021年11月15日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员