We propose MultiOpEd, an open-domain news editorial corpus that supports various tasks pertaining to the argumentation structure in news editorials, focusing on automatic perspective discovery. News editorial is a genre of persuasive text, where the argumentation structure is usually implicit. However, the arguments presented in an editorial typically center around a concise, focused thesis, which we refer to as their perspective. MultiOpEd aims at supporting the study of multiple tasks relevant to automatic perspective discovery, where a system is expected to produce a single-sentence thesis statement summarizing the arguments presented. We argue that identifying and abstracting such natural language perspectives from editorials is a crucial step toward studying the implicit argumentation structure in news editorials. We first discuss the challenges and define a few conceptual tasks towards our goal. To demonstrate the utility of MultiOpEd and the induced tasks, we study the problem of perspective summarization in a multi-task learning setting, as a case study. We show that, with the induced tasks as auxiliary tasks, we can improve the quality of the perspective summary generated. We hope that MultiOpEd will be a useful resource for future studies on argumentation in the news editorial domain.
翻译:我们建议多功能编辑,这是一个开放式的新闻编辑程序,它支持与新闻社论的论证结构有关的各种任务,侧重于自动发现视角。新闻编辑是具有说服力的文本的流派,通常隐含了论证结构。然而,在一个编辑中提出的论点通常以简洁、重点突出的论文为中心,我们称之为它们的观点。多功能编辑的目的是支持研究与自动发现观点有关的多重任务,其中一个系统预计将产生一个单一的句子说明,总结提出的论点。我们认为,从编辑中找出和抽象这种自然语言观点是研究新闻社论中隐含的论证结构的关键一步。我们首先讨论挑战,并界定实现我们目标的几项概念任务。为了展示多功能编辑和引导出的任务的效用,我们将研究多功能学习环境中的视角总结问题,作为案例研究。我们表明,随着导出的任务作为辅助性任务,我们可以提高所产生观点摘要的质量。我们希望多功能编辑系统将成为未来编辑领域辩论的有用资源。