The recent studies on semantic segmentation are starting to notice the significance of the boundary information, where most approaches see boundaries as the supplement of semantic details. However, simply combing boundaries and the mainstream features cannot ensure a holistic improvement of semantics modeling. In contrast to the previous studies, we exploit boundary as a significant guidance for context aggregation to promote the overall semantic understanding of an image. To this end, we propose a Boundary guided Context Aggregation Network (BCANet), where a Multi-Scale Boundary extractor (MSB) borrowing the backbone features at multiple scales is specifically designed for accurate boundary detection. Based on which, a Boundary guided Context Aggregation module (BCA) improved from Non-local network is further proposed to capture long-range dependencies between the pixels in the boundary regions and the ones inside the objects. By aggregating the context information along the boundaries, the inner pixels of the same category achieve mutual gains and therefore the intra-class consistency is enhanced. We conduct extensive experiments on the Cityscapes and ADE20K databases, and comparable results are achieved with the state-of-the-art methods, clearly demonstrating the effectiveness of the proposed one.
翻译:最近关于语义分解的研究开始注意到边界信息的重要性,大多数方法将边界视为语义细节的补充,但是,简单地对边界和主流特征进行梳理并不能确保整体改进语义建模。与以往的研究相比,我们利用边界作为背景汇总的重要指南,以促进对图像的整体语义理解。为此,我们提议建立一个边界引导背景聚合网络(BCANet),在多尺度上借用主干特征的多级边界提取器(MSB)专门设计用于准确的边界探测。在此基础上,进一步提议从非本地网络改进的边界引导环境聚合模块(BCA),以捕捉边界区域等离子与目标内等离子之间的长期依赖性。通过汇总边界上的背景资料,同一类别的内等离子获得共同收益,从而增强阶级间的一致性。我们在城市景象和ADE20K数据库上进行了广泛的实验,并用州式方法取得了可比较的结果。