This paper presents a new foundational approach to information theory based on the concept of the information efficiency of a recursive function, which is defined as the difference between the information in the input and the output. The theory allows us to study planar representations of various infinite domains. Dilation theory studies the information effects of recursive operations in terms of topological deformations of the plane. I show that the well-known class of finite sets of natural numbers behaves erratically under such transformations. It is subject to phase transitions that in some cases have a fractal nature. The class is semi-countable: there is no intrinsic information theory for this class and there are no efficient methods for systematic search. There is a relation between the information efficiency of the function and the time needed to compute it: a deterministic computational process can destroy information in linear time, but it can only generate information at logarithmic speed. Checking functions for problems in NP are information discarding. Consequently, when we try to solve a decision problem based on an efficiently computable checking function, we need exponential time to reconstruct the information destroyed by such a function. NP-complete problems are hard because they are defined on semi-countable domains. There is a smaller class of problems, based on countable domains, that has a more transparent structure. One such problem, Subset Bitwise XOR, which could also be described as Multiple Mutual Key Encryption, is shown to be in NP but not in P. At the end of the paper I sketch a systematic taxonomy for problems in NP.
翻译:本文以循环函数的信息效率概念为基础,提出了一种新的信息理论基础方法, 其基础方法基于循环函数的信息效率概念, 定义为输入和输出中的信息差异。 理论允许我们研究各种无限域的平面表达方式。 实验理论研究飞机表面变形的循环操作对信息的影响。 我显示, 已知的有限自然数字组类别在这种变异中行为不规则。 在某些情况中, 阶段性转变具有分解性。 类是半可算的: 这个类别没有内在的信息理论, 没有系统搜索的有效方法。 理论使我们可以研究各种无限域的平面表达方式。 参数和编译它所需的时间之间存在一种关系: 确定性的计算过程可以在线性时间内破坏信息, 但是它只能以逻辑速度生成信息。 检查 NP 中的问题可能是信息丢弃的。 因此, 当我们试图根据高效的可调和核对功能来解决一个决定问题时, 我们需要指数时间来在这种类中进行半数值的双向域中重建信息, 在可读的轨道结构中, 也显示一个硬的轨道问题。 。 在这种轨道结构上, 是一个硬的轨道上的问题是 。