Surround View fisheye cameras are commonly deployed in automated driving for 360\deg{} near-field sensing around the vehicle. This work presents a multi-task visual perception network on unrectified fisheye images to enable the vehicle to sense its surrounding environment. It consists of six primary tasks necessary for an autonomous driving system: depth estimation, visual odometry, semantic segmentation, motion segmentation, object detection, and lens soiling detection. We demonstrate that the jointly trained model performs better than the respective single task versions. Our multi-task model has a shared encoder providing a significant computational advantage and has synergized decoders where tasks support each other. We propose a novel camera geometry based adaptation mechanism to encode the fisheye distortion model both at training and inference. This was crucial to enable training on the WoodScape dataset, comprised of data from different parts of the world collected by 12 different cameras mounted on three different cars with different intrinsics and viewpoints. Given that bounding boxes is not a good representation for distorted fisheye images, we also extend object detection to use a polygon with non-uniformly sampled vertices. We additionally evaluate our model on standard automotive datasets, namely KITTI and Cityscapes. We obtain the state-of-the-art results on KITTI for depth estimation and pose estimation tasks and competitive performance on the other tasks. We perform extensive ablation studies on various architecture choices and task weighting methodologies. A short video at https://youtu.be/xbSjZ5OfPes provides qualitative results.
翻译:远洋鱼眼照相机通常用于自动驾驶360\deg ⁇ 汽车周围的近地遥感。 这项工作展示了多任务视觉观察网络, 使飞行器能够感知周围环境。 它由自主驾驶系统所需的六大任务组成: 深度估计、 视觉观察、 语义分解、 运动分解、 物体探测和透镜土壤探测。 我们显示, 联合训练的模型比单个任务版本要好。 我们的多任务模型有一个共享的编码器, 提供了巨大的计算优势, 并且具有协同化的分解器, 任务相互支持。 我们提议了一个基于新颖相机的地理测量机制, 用于在培训和推断中对鱼眼扭曲模型进行编码。 这对进行WoodScape数据集的培训至关重要, 这些数据由安装在三个不同汽车上的不同摄像头收集的数据组成, 具有不同内在和观点。 我们的捆绑框对于扭曲的鱼眼图像来说不是很好的表示, 我们还将对象探测模型扩大到一个具有非直观性平面结果的多面S- 图像。 我们用非直观的图像分析方法对城市的多面的模型进行测试。 我们用一个非直观评估。 我们用一种标准的图像分析任务, 我们用其他的模型来评估。 我们用一种标准的基的基图。 我们用其他的图像分析。