In recent years, considerable progress has been made in the visual quality of Generative Adversarial Networks (GANs). Even so, these networks still suffer from degradation in quality for high-frequency content, stemming from a spectrally biased architecture, and similarly unfavorable loss functions. To address this issue, we present a novel general-purpose Style and WAvelet based GAN (SWAGAN) that implements progressive generation in the frequency domain. SWAGAN incorporates wavelets throughout its generator and discriminator architectures, enforcing a frequency-aware latent representation at every step of the way. This approach yields enhancements in the visual quality of the generated images, and considerably increases computational performance. We demonstrate the advantage of our method by integrating it into the SyleGAN2 framework, and verifying that content generation in the wavelet domain leads to higher quality images with more realistic high-frequency content. Furthermore, we verify that our model's latent space retains the qualities that allow StyleGAN to serve as a basis for a multitude of editing tasks, and show that our frequency-aware approach also induces improved downstream visual quality.


翻译:近年来,Generation Adversarial Network(GANs)在视觉质量方面取得了相当大的进展,尽管如此,这些网络仍然由于光谱偏差结构以及同样不利的损失功能而导致高频内容质量下降,高频内容质量下降。为了解决这一问题,我们提出了一个新的通用样式和Wavelet GAN(SWAGAN)新颖的GAN(SWAGAN),在频率域内实施渐进生成。SWAGAN将波子融入其生成器和导体结构,在前进的每一步都强制实施频率认知潜在代表制。这一方法提高了所生成图像的视觉质量,并大大提高了计算性能。我们展示了我们的方法的优势,将它纳入SyleGAN2框架,并核实波盘域的内容生成能够带来更现实的高频内容的更高质量图像。此外,我们核实我们的模型潜在空间保留了使StyGAN作为大量编辑任务的基础的品质,并表明我们的频率认知方法还提高了下游视觉质量。

0
下载
关闭预览

相关内容

在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
最新《生成式对抗网络GAN逆转》综述论文,22页pdf
专知会员服务
39+阅读 · 2021年1月19日
生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
150+阅读 · 2020年12月30日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
最新《生成式对抗网络GAN时空数据应用》综述论文,28pdf
生成对抗网络GAN的发展与最新应用
专知会员服务
126+阅读 · 2020年8月13日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
生成式对抗网络GAN异常检测
专知会员服务
116+阅读 · 2019年10月13日
【GAN】生成对抗网络(GAN)的发展史
产业智能官
16+阅读 · 2020年3月20日
详解GAN的谱归一化(Spectral Normalization)
PaperWeekly
11+阅读 · 2019年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GAN | GAN介绍(2)
KingsGarden
27+阅读 · 2017年3月14日
Seeing What a GAN Cannot Generate
Arxiv
8+阅读 · 2019年10月24日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月21日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
【GAN】生成对抗网络(GAN)的发展史
产业智能官
16+阅读 · 2020年3月20日
详解GAN的谱归一化(Spectral Normalization)
PaperWeekly
11+阅读 · 2019年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GAN | GAN介绍(2)
KingsGarden
27+阅读 · 2017年3月14日
Top
微信扫码咨询专知VIP会员