Collision avoidance is key for mobile robots and agents to operate safely in the real world. In this work, we present an efficient and effective collision avoidance system that combines real-world reinforcement learning (RL), search-based online trajectory planning, and automatic emergency intervention, e.g. automatic emergency braking (AEB). The goal of the RL is to learn effective search heuristics that speed up the search for collision-free trajectory and reduce the frequency of triggering automatic emergency interventions. This novel setup enables RL to learn safely and directly on mobile robots in a real-world indoor environment, minimizing actual crashes even during training. Our real-world experiments show that, when compared with several baselines, our approach enjoys a higher average speed, lower crash rate, higher goals reached rate, smaller computation overhead, and smoother overall control.
翻译:避免碰撞是移动机器人和代理人在现实世界中安全运行的关键。 在这项工作中,我们提出了一个高效而有效的避免碰撞系统,将现实世界强化学习(RL ) 、 基于搜索的在线轨迹规划和自动应急干预(如自动应急制动 ) ( AEB ) 结合起来。 移动机器人和代理人避免碰撞是移动机器人和代理人在现实世界中安全运行的关键。 在这项工作中,我们展示了一个高效而有效的避免碰撞系统,将现实世界强化学习(RL ) 、 基于搜索的在线轨迹规划以及自动应急干预(如自动应急制动 ) 。 移动机器人和代理人避免碰撞的目的是学习有效的搜索习惯,加快寻找无碰撞轨迹的速度,降低触发自动应急干预的频率。 这一新颖的设置使移动机器人能够在现实世界的室内环境中安全直接学习,即使培训期间也最大限度地减少实际碰撞。 我们的现实世界实验显示,与几个基线相比,我们的方法拥有更高的平均速度、较低的碰撞率、更高的目标达到的速度、更小的计算间接费用以及更平稳的总体控制。