Accuracy and stability are common requirements for Quadrotor trajectory tracking systems. Designing an accurate and stable tracking controller remains challenging, particularly in unknown and dynamic environments with complex aerodynamic disturbances. We propose a Quantile-approximation-based Distributional-reinforced Uncertainty Estimator (QuaDUE) to accurately identify the effects of aerodynamic disturbances, i.e., the uncertainties between the true and estimated Control Contraction Metrics (CCMs). Taking inspiration from contraction theory and integrating the QuaDUE for uncertainties, our novel CCM-based trajectory tracking framework tracks any feasible reference trajectory precisely whilst guaranteeing exponential convergence. More importantly, the convergence and training acceleration of the distributional RL are guaranteed and analyzed, respectively, from theoretical perspectives. We also demonstrate our system under unknown and diverse aerodynamic forces. Under large aerodynamic forces (>2m/s^2), compared with the classic data-driven approach, our QuaDUE-CCM achieves at least a 56.6% improvement in tracking error. Compared with QuaDRED-MPC, a distributional RL-based approach, QuaDUE-CCM achieves at least a 3 times improvement in contraction rate.
翻译:准确性和稳定性是四方轨道跟踪系统的共同要求。设计一个准确和稳定的跟踪控制器仍然具有挑战性,特别是在具有复杂的空气动力扰动的未知和动态环境中。我们建议使用一个基于定量-配方-配方-加固的不确定性模拟器(QuaudueE),以准确识别空气动力干扰的影响,即真实和估计控制侵蚀仪(CMS)之间的不确定性。从收缩理论中汲取灵感,并整合卡杜埃的不确定性跟踪器,我们以CCM为基础的新的轨迹跟踪框架跟踪任何可行的参考轨迹,同时保证指数趋同。更重要的是,我们从理论角度分别保证并分析分布式RL的趋同和培训加速。我们还展示了我们系统在未知和多样的空气动力力量下,即与典型的数据驱动方法相比,我们的卡杜埃-CMM(QuaDUE)-CCC(QuaDRE-MPC)方法在跟踪错误方面至少实现了56.6%的改进。与Qua-MPC(RDUA)的递增速率相比,在最小的RDUC(RDU-L)。