With the booming of pre-trained transformers, remarkable progress has been made on textual pair modeling to support relevant natural language applications. Two lines of approaches are developed for text matching: interaction-based models performing full interactions over the textual pair, and representation-based models encoding the pair independently with siamese encoders. The former achieves compelling performance due to its deep interaction modeling ability, yet with a sacrifice in inference latency. The latter is efficient and widely adopted for practical use, however, suffers from severe performance degradation due to the lack of interactions. Though some prior works attempt to integrate interactive knowledge into representation-based models, considering the computational cost, they only perform late interaction or knowledge transferring at the top layers. Interactive information in the lower layers is still missing, which limits the performance of representation-based solutions. To remedy this, we propose a novel \textit{Virtual} InteRacTion mechanism, termed as VIRT, to enable full and deep interaction modeling in representation-based models without \textit{actual} inference computations. Concretely, VIRT asks representation-based encoders to conduct virtual interactions to mimic the behaviors as interaction-based models do. In addition, the knowledge distilled from interaction-based encoders is taken as supervised signals to promise the effectiveness of virtual interactions. Since virtual interactions only happen at the training stage, VIRT would not increase the inference cost. Furthermore, we design a VIRT-adapted late interaction strategy to fully utilize the learned virtual interactive knowledge.


翻译:随着经过培训的变压器的兴起,在文本配对模式方面取得了显著进展,以支持相关的自然语言应用。为文本匹配制定了两行方法:基于互动的模型,在文本配对中进行充分互动,基于代表的模型独立地将配对与 Siamese 编码器编码。前者由于其深度互动模型能力而取得了令人信服的性能,但又在推论期中牺牲了隐含的潜伏力,后者由于缺乏互动而有效和被广泛采用,在实际使用方面出现了严重的性能退化。虽然以前的一些工作试图将交互式知识纳入基于代表性的模式,考虑到计算成本,但它们只是在顶层进行晚期互动或知识转让。低层的交互式信息仍然缺失,这限制了基于代表性的解决方案的性能。为了纠正这一点,我们建议采用新的“Textitit{Virtualth} InteRacTion机制,称为“VIRT”,以便完全和深入地建模基于代表性的模型的模拟,而无需/text{condical} 度计算。具体地说,VIRT VIRT Exde-demode-de-de-de-demode-de-deactactactactactactactactactivactation der-deactactivactations

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
88+阅读 · 2021年6月29日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员