Non-overlapping domain decomposition methods are natural for solving interface problems arising from various disciplines, however, the numerical simulation requires technical analysis and is often available only with the use of high-quality grids, thereby impeding their use in more complicated situations. To remove the burden of mesh generation and to effectively tackle with the interface jump conditions, a novel mesh-free scheme, i.e., Dirichlet-Neumann learning algorithm, is proposed in this work to solve the benchmark elliptic interface problem with high-contrast coefficients as well as irregular interfaces. By resorting to the variational principle, we carry out a rigorous error analysis to evaluate the discrepancy caused by the boundary penalty treatment for each decomposed subproblem, which paves the way for realizing the Dirichlet-Neumann algorithm using neural network extension operators. The effectiveness and robustness of our proposed methods are demonstrated experimentally through a series of elliptic interface problems, achieving better performance over other alternatives especially in the presence of erroneous flux prediction at interface.


翻译:不重叠的域分解方法对于解决不同学科产生的界面问题来说是自然的,但是,数字模拟需要技术分析,而且往往只有在使用高质量电网的情况下才能使用,从而妨碍在更复杂的情况下使用这些电网。为了消除网状生成的负担,并有效地解决界面跳跃条件,在这项工作中提议了一个新型的无网状方法,即Drichlet-Neumann学习算法,以解决与高复度系数和不规则界面的基准椭圆界面问题。我们采用变异原则,进行了严格的错误分析,以评估对每个不完善的子问题进行边界处罚处理所造成的差异,这为利用神经网络扩展操作者实现Drichlet-Neumann算法铺平了道路。我们拟议方法的有效性和稳健性通过一系列的椭圆界面问题,通过实验性地展示了我们拟议方法的有效性和稳健性,通过一系列的外延式界面问题,在界面出现错误的通量预测的情况下,在其它替代品上取得更好的性。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
35+阅读 · 2021年8月2日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员