In this paper, we use the first-order virtual element method (VEM) to investigate the effect of shape quality of polyhedra in the estimation of the critical time step for explicit three-dimensional elastodynamic finite element (FE) simulations. Low-quality finite elements are common when meshing realistic complex components, and while tetrahedral meshing technology is generally robust, meshing algorithms cannot guarantee high-quality meshes for arbitrary geometries or for non-water-tight computer-aided design models. For reliable simulations on such meshes, we consider FE meshes with tetrahedral and prismatic elements that have badly-shaped elements$-$tetrahedra with dihedral angles close to $0^\circ$ and $180^\circ$, and slender prisms with triangular faces that have short edges$-$and agglomerate such `bad' elements with neighboring elements to form a larger polyhedral virtual element. On each element, the element-eigenvalue inequality is used to estimate the critical time step. For a suite of illustrative finite element meshes with $\epsilon$ being a mesh-coordinate parameter that leads to poor mesh quality, we show that adopting VEM on the agglomerated polyhedra yield critical time steps that are insensitive as $\epsilon \rightarrow 0$. The significant reduction in solution time on meshes with agglomerated virtual elements vis-$\`a$-vis tetrahedral meshes is demonstrated through explicit dynamics simulations on a tapered beam.
翻译:在本文中,我们使用第一级虚拟元件方法(VEM)来调查多环形元体形状质量在估算清晰的三维远光动力定量元素(FE)模拟的关键时间步骤中的影响。在混结现实复杂的组件中,低质量的有限元素是常见的。虽然四面形网格网格技术一般都很健全,但网形算法无法保证任意的地貌或非水紧计算机辅助的设计模型中的高质量 meshes 。对于这类模shes的可靠模拟,我们认为带有四面体和振动元素的关键时间步骤的FEmeshes,这些元素的四面体和振动性元素有坏形元素,$-美元-四面体运动定值的参数值是美元;对于三角面形网格的模型来说,“坏”元素构成更大的聚光度虚拟元素。对于每个元素而言,元素的值不平等值是用来估算临界的成形元素-一美元- 三角形体平面的温度,我们用一个缩数的缩数级的缩数 。