Next generation cellular networks will implement radio sensing functions alongside customary communications, thereby enabling unprecedented worldwide sensing coverage outdoors. Deep learning has revolutionised computer vision but has had limited application to radio perception tasks, in part due to lack of systematic datasets and benchmarks dedicated to the study of the performance and promise of radio sensing. To address this gap, we present MaxRay: a synthetic radio-visual dataset and benchmark that facilitate precise target localisation in radio. We further propose to learn to localise targets in radio without supervision by extracting self-coordinates from radio-visual correspondence. We use such self-supervised coordinates to train a radio localiser network. We characterise our performance against a number of state-of-the-art baselines. Our results indicate that accurate radio target localisation can be automatically learned from paired radio-visual data without labels, which is important for empirical data. This opens the door for vast data scalability and may prove key to realising the promise of robust radio sensing atop a unified communication-perception cellular infrastructure. Dataset will be hosted on IEEE DataPort.
翻译:下一代蜂窝网络将与惯常通信一起实施射频感测功能,从而在室外实现前所未有的全球感测覆盖。深度学习已经彻底改变了计算机视觉,但在射频感知任务中的应用有限,部分原因是缺乏专门用于研究射频感测性能和应用前景的系统数据集和基准。为了填补这一空白,我们提出了MaxRay:一种人造射频-图像数据集和基准,可在射频中实现精确的目标定位。我们进一步建议学习从无人监督中提取射频-视觉对应关系中的自坐标以实现射频定位。我们使用这种自学习的坐标来训练射频定位器网络。我们针对一些最先进的基线特征描述我们的性能。我们的结果表明,可以在没有标签的情况下从配对的射频-视觉数据中自动学习准确的射频目标定位,这对实证数据非常重要。这为大量数据可扩展性打开了大门,并可能成为实现在统一的通信-感知蜂窝基础设施上实现强大射频感测的关键。数据集将托管在IEEE DataPort上。