Driven by the need to accelerate numerical simulations, the use of machine learning techniques is rapidly growing in the field of computational solid mechanics. Their application is especially advantageous in concurrent multiscale finite element analysis (FE$^2$) due to the exceedingly high computational costs often associated with it and the high number of similar micromechanical analyses involved. To tackle the issue, using surrogate models to approximate the microscopic behavior and accelerate the simulations is a promising and increasingly popular strategy. However, several challenges related to their data-driven nature compromise the reliability of surrogate models in material modeling. The alternative explored in this work is to reintroduce some of the physics-based knowledge of classical constitutive modeling into a neural network by employing the actual material models used in the full-order micromodel to introduce non-linearity. Thus, path-dependency arises naturally since every material model in the layer keeps track of its own internal variables. For the numerical examples, a composite Representative Volume Element with elastic fibers and elasto-plastic matrix material is used as the microscopic model. The network is tested in a series of challenging scenarios and its performance is compared to that of a state-of-the-art Recurrent Neural Network (RNN). A remarkable outcome of the novel framework is the ability to naturally predict unloading/reloading behavior without ever seeing it during training, a stark contrast with popular but data-hungry models such as RNNs. Finally, the proposed network is applied to FE$^2$ examples to assess its robustness for application in nonlinear finite element analysis.


翻译:由于需要加速数字模拟,机器学习技术的使用在计算固体力学领域正在迅速增长,在同时进行多尺度的有限元素分析(FE$2$2$)方面,应用这些技术特别有利,因为经常与此相关的计算成本极高,而且涉及的类似微机械分析也很多。为了解决这一问题,使用代用模型来估计微缩行为并加速模拟,这是一个充满希望和日益受欢迎的战略。然而,与其数据驱动性质有关的若干挑战损害了材料模型的替代模型的可靠性。这项工作探讨的替代办法是将一些基于物理的经典构造模型模型学知识(FE$2$2$2$)重新引入神经网络,方法是利用全序微型模型中使用的实际材料模型来引入非线性。因此,路径依赖性是自然的,因为层中的每一材料模型都跟踪自己的内部变量。在数字模型中,一个带有弹性纤维纤维和静态矩阵材料的复合体模型,作为微缩缩缩缩缩缩图案模型的模型。 网络将一个具有挑战性结果的模型,其直径直径的模型应用能力在不断测试中进行。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月24日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员