NOTE: This preprint has a flawed theoretical formulation. Please avoid it and refer to the ICLR22 publication https://openreview.net/forum?id=q7n2RngwOM. Also, arXiv:2109.15062 contains some new ideas on unobserved Confounding. As an important problem of causal inference, we discuss the identification and estimation of treatment effects under unobserved confounding. Representing the confounder as a latent variable, we propose Intact-VAE, a new variant of variational autoencoder (VAE), motivated by the prognostic score that is sufficient for identifying treatment effects. We theoretically show that, under certain settings, treatment effects are identified by our model, and further, based on the identifiability of our model (i.e., determinacy of representation), our VAE is a consistent estimator with representation balanced for treatment groups. Experiments on (semi-)synthetic datasets show state-of-the-art performance under diverse settings.
翻译:注:这个预印有错误的理论表述。请避免它,并参考ICLR22出版物 https://openreview.net/forum?id=q7n2RngwOM。此外,arXiv:210915062包含一些关于未观察到的混乱的新想法。作为因果关系的一个重要问题,我们讨论在未观察到的混杂下确定和估计治疗效果的问题。我们以隐性变量为代表,提议Intact-VAE,这是受预测性分数驱动的变异自动计算机(VAE)的新变异变量,足以确定治疗效果。我们理论上表明,在某些环境下,治疗效果是由我们的模型确定的,而且根据我们模型的可识别性(即代表的确定性),我们的VAE是一个一致的估算器,代表各治疗组的均衡。(半)合成数据集实验显示不同环境中的状态和艺术表现。