To fully exploit the advantages of massive multiple-input multiple-output (m-MIMO), accurate channel state information (CSI) is required at the transmitter. However, excessive CSI feedback for large antenna arrays is inefficient and thus undesirable in practical applications. By exploiting the inherent correlation characteristics of complex-valued channel responses in the angular-delay domain, we propose a novel neural network (NN) architecture, namely ENet, for CSI compression and feedback in m-MIMO. Even if the ENet processes the real and imaginary parts of the CSI values separately, its special structure enables the network trained for the real part only to be reused for the imaginary part. The proposed ENet shows enhanced performance with the network size reduced by nearly an order of magnitude compared to the existing NN-based solutions. Experimental results verify the effectiveness of the proposed ENet.
翻译:为了充分利用大规模多投入多重产出(m-MIMO)的优势,发射机需要准确的频道状态信息(CSI),然而,对大型天线阵列的CSI过多反馈效率低下,因此在实际应用中是不可取的。通过利用在角悬浮域中复杂估价的频道反应的内在相关特点,我们提议建立一个新型神经网络结构,即ENet,用于CSI压缩和m-MIMO的反馈。即使ENet单独处理CSI值的实际部分和想象部分,其特殊结构也使得为实际部分训练的网络只能用于想象部分。拟议的ENet显示,与现有的NNN解决办法相比,网络规模减少近一定的幅度,其性能得到了提高。实验结果验证了拟议的ENet的有效性。