Visible Light Communication (VLC) has been widely investigated during the last decade due to its ability to provide high data rates with low power consumption. In general, resource management is an important issue in cellular networks that can highly effect their performance. In this paper, an optimisation problem is formulated to assign each user to an optimal access point and a wavelength at a given time. This problem can be solved using mixed integer linear programming (MILP). However, using MILP is not considered a practical solution due to its complexity and memory requirements. In addition, accurate information must be provided to perform the resource allocation. Therefore, the optimisation problem is reformulated using reinforcement learning (RL), which has recently received tremendous interest due to its ability to interact with any environment without prior knowledge. In this paper, we investigate solving the resource allocation optimisation problem in VLC systems using the basic Q-learning algorithm. Two scenarios are simulated to compare the results with the previously proposed MILP model. The results demonstrate the ability of the Q-learning algorithm to provide optimal solutions close to the MILP model without prior knowledge of the system.


翻译:过去十年来,人们广泛调查了可见光通信(VLC),因为它能够提供高数据率低电耗,总体而言,资源管理是细胞网络中的一个重要问题,能够对其性能产生高度影响。在本文件中,优化问题被提出来,让每个用户在特定时间达到最佳接入点和波长。这个问题可以通过混合整数线性编程(MILP)来解决。但是,由于MILP的复杂性和记忆要求,使用MILP并不被视为一个实际解决办法。此外,必须提供准确的信息来进行资源分配。因此,优化问题是利用强化学习(RL)重新形成的,因为后者最近由于能够在没有事先了解的情况下与任何环境进行互动而引起极大兴趣。在本文件中,我们研究如何利用基本的Q-学习算法解决VLC系统中的资源分配优化问题。模拟了两种假设,将结果与先前提议的MILP模型进行比较。结果显示Q学习算法有能力提供接近MILP模型的最佳解决方案,而没有事先对系统的了解。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
40+阅读 · 2020年3月9日
【精通OpenCV 4】Mastering OpenCV 4 - Third Edition 随书代码
专知会员服务
40+阅读 · 2019年11月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
已删除
将门创投
5+阅读 · 2019年4月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
<好书推荐> -《Pro Deep Learning with TensorFlow》分享
深度学习与NLP
12+阅读 · 2018年9月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年7月12日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
40+阅读 · 2020年3月9日
【精通OpenCV 4】Mastering OpenCV 4 - Third Edition 随书代码
专知会员服务
40+阅读 · 2019年11月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
已删除
将门创投
5+阅读 · 2019年4月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
<好书推荐> -《Pro Deep Learning with TensorFlow》分享
深度学习与NLP
12+阅读 · 2018年9月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员