We present the first compact distance oracle that tolerates multiple failures and maintains exact distances. Given an undirected weighted graph $G = (V, E)$ and an arbitrarily large constant $d$, we construct an oracle that given vertices $u, v \in V$ and a set of $d$ edge failures $D$, outputs the exact distance between $u$ and $v$ in $G - D$ (that is, $G$ with edges in $D$ removed). Our oracle has space complexity $O(d n^4)$ and query time $d^{O(d)}$. Previously, there were compact approximate distance oracles under multiple failures [Chechik, Cohen, Fiat, and Kaplan, SODA'17; Duan, Gu, and Ren, SODA'21], but the best exact distance oracles under $d$ failures require essentially $\Omega(n^d)$ space [Duan and Pettie, SODA'09]. Our distance oracle seems to require $n^{\Omega(d)}$ time to preprocess; we leave it as an open question to improve this preprocessing time.
翻译:我们提出第一个允许多次故障并保持准确距离的紧凑距离。鉴于一个未指示的加权图形$G = (V, E) = (V, E) 和一个任意的大型常数 $,我们建造了一个给顶脊$(V) 和一组美元边际故障(美元)的甲骨文(美元)和一组美元边际故障(美元),产出的准确距离为美元和美元面值(美元)-美元(美元边值被去除)。我们的顶峰有空间复杂度(O(d n) $) 和查询时间 $(d) =(d) (d) $(d) 美元。以前,我们建造了一个在多次故障[Chechik, Cohen, Fiat, 和 Kaplan, SODA'17; Duan, Gu, 和 Ren, SODA'21] 下最准确的距离(美元面值) $(美元) $(即 美元边际差值) 。我们的空间[Duan and Pettie, SO'09].