KernelHaven is an open infrastructure for Software Product Line (SPL) analysis. It is intended both as a production-quality analysis tool set as well as a research support tool, e.g., to support researchers in systematically exploring research hypothesis. For flexibility and ease of experimentation KernelHaven components are plug-ins for extracting certain information from SPL artifacts and processing this information, e.g., to check the correctness and consistency of variability information or to apply metrics. A configuration-based setup along with automatic documentation functionality allows different experiments and supports their easy reproduction. Here, we describe KernelHaven as a product line analysis research tool and highlight its basic approach as well as its fundamental capabilities. In particular, we describe available information extraction and processing plug-ins and how to combine them. On this basis, researchers and interested professional users can rapidly conduct a first set of experiments. Further, we describe the concepts for extending KernelHaven by new plug-ins, which reduces development effort when realizing new experiments.


翻译:Kernel Haven是软件产品系列(SPL)分析的开放式基础设施,既用作生产质量分析工具,又用作研究支持工具,例如,支持研究人员系统地探索研究假设。为了耐内尔 Haven实验成分的灵活性和方便性,Kernel Haven实验成分可以插座,从SPL工艺品中提取某些信息并处理这些信息,例如检查变异信息的正确性和一致性或应用量度。基于配置的设置以及自动文档功能允许不同实验并支持其简单复制。在这里,我们描述Kernel Haven为产品系列分析研究工具,突出其基本方法及其基本能力。我们特别描述了现有信息提取和处理插件以及如何将其组合。在此基础上,研究人员和有关专业用户可以迅速进行第一组实验。此外,我们描述通过新插件扩展Kernel Haven的概念,这将减少实现新实验时的开发努力。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
39+阅读 · 2020年9月6日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
Top
微信扫码咨询专知VIP会员