Crystal plasticity finite element model (CPFEM) is a powerful numerical simulation in the integrated computational materials engineering (ICME) toolboxes that relates microstructures to homogenized materials properties and establishes the structure-property linkages in computational materials science. However, to establish the predictive capability, one needs to calibrate the underlying constitutive model, verify the solution and validate the model prediction against experimental data. Bayesian optimization (BO) has stood out as a gradient-free efficient global optimization algorithm that is capable of calibrating constitutive models for CPFEM. In this paper, we apply a recently developed asynchronous parallel constrained BO algorithm to calibrate phenomenological constitutive models for stainless steel 304L, Tantalum, and Cantor high-entropy alloy.
翻译:一种异步并行高吞吐量晶体塑性有限元本构模型校准框架
翻译后的摘要:
晶体塑性有限元模型(CPFEM)是集成计算材料工程(ICME)工具箱中的一种强大的数值模拟工具,用于将微结构与均质材料性质联系起来并建立计算材料科学中的结构-性能联系。然而,要建立预测能力,需要校准潜在的本构模型,验证解决方案并将模型预测与实验数据进行验证。贝叶斯优化(BO)已成为一种无梯度高效全局优化算法,能够校准CPFEM的本构模型。在本文中,我们应用了最近开发的异步并行约束BO算法,以校准不锈钢304L,钽和坎特高熵合金的现象本构模型。