Large-scale finite element simulations of complex physical systems governed by partial differential equations crucially depend on adaptive mesh refinement (AMR) to allocate computational budget to regions where higher resolution is required. Existing scalable AMR methods make heuristic refinement decisions based on instantaneous error estimation and thus do not aim for long-term optimality over an entire simulation. We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning (RL) to train refinement policies directly from simulation. AMR poses a new problem for RL in that both the state dimension and available action set changes at every step, which we solve by proposing new policy architectures with differing generality and inductive bias. The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations. We demonstrate in comprehensive experiments on static function estimation and the advection of different fields that RL policies can be competitive with a widely-used error estimator and generalize to larger, more complex, and unseen test problems.
翻译:对受部分差异方程式制约的复杂物理系统进行大型有限要素模拟,这在很大程度上取决于适应性网格改进(AMR),以便向需要更高分辨率的区域分配计算预算。现有的可扩缩的AMR方法根据瞬时误差估计作出超速的改进决定,因此没有着眼于在整个模拟中实现长期最佳性。我们建议采用新颖的AMR公式,作为Markov决策程序,并应用深度强化学习(RL)来直接从模拟中培训完善政策。AMR给RL带来了一个新问题,因为国家层面和现有行动每一步都设定了变化,我们通过提出具有不同一般性和感性偏差的新政策结构加以解决。这些政策结构的模型大小独立于网格大小,因此不局限于任意的大型和复杂模拟。我们在关于静函数估计的综合实验中和不同领域的适应实验中证明,RL政策可以具有竞争力,而广泛使用的误测和概括为更大、更复杂和看不见的测试问题。