In this paper we present the implementation of a Control Barrier Function (CBF) using a quadratic program (QP) formulation that provides obstacle avoidance for a robotic manipulator arm system. CBF is a control technique that has emerged and developed over the past decade and has been extensively explored in the literature on its mathematical foundations, proof of set invariance and potential applications for a variety of safety-critical control systems. In this work we will look at the design of CBF for the robotic manipulator obstacle avoidance, discuss the selection of the CBF parameters and present a Reinforcement Learning (RL) scheme to assist with finding parameters values that provide the most efficient trajectory to successfully avoid different sized obstacles. We then create a data-set across a range of scenarios used to train a Neural-Network (NN) model that can be used within the control scheme to allow the system to efficiently adapt to different obstacle scenarios. Computer simulations (based on Matlab/Simulink) demonstrate the effectiveness of the proposed algorithm.
翻译:在本文中,我们介绍使用四边程序(QP)的配方,避免机器人操纵器臂系统的障碍,实施控制屏障功能(CBF)的情况,CBF是过去十年中出现和开发的一种控制技术,在数学基础文献中进行了广泛探讨,证明了各种安全关键控制系统的各种变数和潜在应用;在这项工作中,我们将研究机器人操纵器障碍避免控制屏障的CBF设计,讨论选择CBF参数,并提出一项强化学习计划,以协助寻找参数值,提供最有效的轨迹,成功避免不同大小的障碍;然后,我们创建一套数据集,覆盖各种情景,用于培训神经网络模型,可在控制计划内使用,使系统能够有效地适应不同的障碍情景;计算机模拟(以Matlab/Simolink为基础)显示拟议算法的有效性。