Vision transformers are nowadays the de-facto choice for image classification tasks. There are two broad categories of classification tasks, fine-grained and coarse-grained. In fine-grained classification, the necessity is to discover subtle differences due to the high level of similarity between sub-classes. Such distinctions are often lost as we downscale the image to save the memory and computational cost associated with vision transformers (ViT). In this work, we present an in-depth analysis and describe the critical components for developing a system for the fine-grained categorization of plants from herbarium sheets. Our extensive experimental analysis indicated the need for a better augmentation technique and the ability of modern-day neural networks to handle higher dimensional images. We also introduce a convolutional transformer architecture called Conviformer which, unlike the popular Vision Transformer (ConViT), can handle higher resolution images without exploding memory and computational cost. We also introduce a novel, improved pre-processing technique called PreSizer to resize images better while preserving their original aspect ratios, which proved essential for classifying natural plants. With our simple yet effective approach, we achieved SoTA on Herbarium 202x and iNaturalist 2019 dataset.


翻译:视觉变异器目前是图像分类任务的脱法选择。 有两大类的分类任务, 精细的和粗粗的。 在细细的分类中, 需要发现细细的分类, 细细的分类中, 由于子类之间的高度相似性而有细微的差别。 当我们缩小图像以保存与视觉变异器(ViT)有关的内存和计算成本时, 这些区别往往会消失。 在这项工作中, 我们提出一个深入分析, 描述开发精细的草原植物分类系统的关键组成部分。 我们的广泛实验分析表明, 需要一种更好的增强技术, 以及现代神经网络处理更高维度图像的能力。 我们还采用了一个叫作PreSizer的改进前处理技术, 以更好地调整图像的原始比例, 而这已证明了对自然植物分类至关重要。 我们还采用了一个叫Convilalal变异器(ConVT)的系统结构, 这个结构与流行的视野变异器(ConVIT)不同, 可以处理更高分辨率的图像, 而不会爆炸记忆和计算成本。 我们还引入了一种新型的改进的预处理技术, 叫做PreSizerate(Prezer) 和计算技术, size), 并保存原始的图像的原始比对自然植物进行分类至关重要。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
298+阅读 · 2020年11月26日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Brain Network Transformer
Arxiv
0+阅读 · 2022年10月15日
Neural Routing in Meta Learning
Arxiv
0+阅读 · 2022年10月14日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
15+阅读 · 2020年2月5日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员