We propose to use Bayesian optimization (BO) to improve the efficiency of the design selection process in clinical trials. BO is a method to optimize expensive black-box functions, by using a regression as a surrogate to guide the search. In clinical trials, planning test procedures and sample sizes is a crucial task. A common goal is to maximize the test power, given a set of treatments, corresponding effect sizes, and a total number of samples. From a wide range of possible designs we aim to select the best one in a short time to allow quick decisions. The standard approach to simulate the power for each single design can become too time-consuming. When the number of possible designs becomes very large, either large computational resources are required or an exhaustive exploration of all possible designs takes too long. Here, we propose to use BO to quickly find a clinical trial design with high power from a large number of candidate designs. We demonstrate the effectiveness of our approach by optimizing the power of adaptive seamless designs for different sets of treatment effect sizes. Comparing BO with an exhaustive evaluation of all candidate designs shows that BO finds competitive designs in a fraction of the time.


翻译:我们提议利用贝叶斯优化(BO)来提高临床试验中设计选择过程的效率。BO是一种优化昂贵黑盒功能的方法,它利用回归作为替代工具来引导搜索。在临床试验中,规划测试程序和样本大小是一项关键任务。一个共同的目标是根据一套治疗方法、相应的效果大小和样本总数,使测试能力最大化。从一系列可能的设计中,我们的目标是在短时间内选择最佳的,以便作出迅速的决定。模拟每种设计的能力的标准方法可能变得过于耗时。当可能的设计量非常大时,要么需要大量的计算资源,要么需要对所有可能的设计进行彻底的探索,耗时过长。在这里,我们提议利用BO迅速找到具有大量候选设计高功率的临床试验设计。我们通过优化不同治疗效果大小的适应性无缝设计的能力来证明我们的方法的有效性。将BO与所有候选设计的全面评估方法相匹配,表明BO在一定的时间里找到竞争性的设计。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月8日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员