Recent work has shown constrained Bayesian optimization to be a powerful technique for the optimization of industrial processes. In complex manufacturing processes, the possibility to run extensive sequences of experiments with the goal of finding good process parameters is severely limited by the time required for quality evaluation of the produced parts. To accelerate the process parameter optimization, we introduce a parallel acquisition procedure tailored on the process characteristics. We further propose an algorithm that adapts to equipment status to improve run-to-run reproducibility. We validate our optimization method numerically and experimentally, and demonstrate that it can efficiently find input parameters that produce the desired outcome and minimize the process cost.
翻译:最近的工作表明,限制Bayesian优化是优化工业流程的强大技术。在复杂的制造工艺中,为寻找良好的流程参数而进行大量实验的可能性由于对生产部件进行质量评估所需的时间而受到严重限制。为了加快流程参数优化,我们引入了一种针对流程特性的平行购置程序。我们进一步提出了一种适应设备状况的算法,以改善运行到运行的再复制。我们用数字和实验方式验证了我们的优化方法,并证明它能够有效地找到能够产生预期结果并最大限度地降低流程成本的投入参数。