Recently, neural natural language models have attained state-of-the-art performance on a wide variety of tasks, but the high performance can result from superficial, surface-level cues (Bender and Koller, 2020; Niven and Kao, 2020). These surface cues, as the ``shortcuts'' inherent in the datasets, do not contribute to the *task-specific information* (TSI) of the classification tasks. While it is essential to look at the model performance, it is also important to understand the datasets. In this paper, we consider this question: Apart from the information introduced by the shortcut features, how much task-specific information is required to classify a dataset? We formulate this quantity in an information-theoretic framework. While this quantity is hard to compute, we approximate it with a fast and stable method. TSI quantifies the amount of linguistic knowledge modulo a set of predefined shortcuts -- that contributes to classifying a sample from each dataset. This framework allows us to compare across datasets, saying that, apart from a set of ``shortcut features'', classifying each sample in the Multi-NLI task involves around 0.4 nats more TSI than in the Quora Question Pair.


翻译:最近,神经自然语言模型在各种各样的任务中取得了最先进的表现,但高性能可以来自表面和表面层次的提示(Bender和Koller,2020年;Niven和Kao,2020年)。这些表面提示,作为数据集中“shortcuts”所固有的“shortcuts”,无助于分类任务中的“task ”特定信息* (TSI)。虽然观察模型性能至关重要,但理解数据集也很重要。在本文中,我们考虑这一问题:除了捷径特征带来的信息外,还需要多少具体任务的信息来对数据集进行分类?我们在一个信息理论框架中制定这个数量。虽然这个数量难以计算,但我们用一种快速和稳定的方法来将其接近。TSI量化了语言知识模块的数量,一套预先界定的捷径,有助于对每个数据集的样本进行分类。这个框架使我们能够对数据集进行交叉比较,说,除了一套“4.11”国家空间研究所的每个样本中每个样本都涉及“0.4 Q”的“多层次”特性外,除了一套“多层次”的“多层次”的“矩阵”外,我们还可以对每个数据集进行比较进行比较。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
56+阅读 · 2021年10月12日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
专栏 | fastText原理及实践
机器之心
3+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
5+阅读 · 2018年1月18日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年10月12日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
专栏 | fastText原理及实践
机器之心
3+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员