The theory of representation learning aims to build methods that provably invert the data generating process with minimal domain knowledge or any source of supervision. Most prior approaches require strong distributional assumptions on the latent variables and weak supervision (auxiliary information such as timestamps) to provide provable identification guarantees. In this work, we show that if one has weak supervision from observations generated by sparse perturbations of the latent variables--e.g. images in a reinforcement learning environment where actions move individual sprites--identification is achievable under unknown continuous latent distributions. We show that if the perturbations are applied only on mutually exclusive blocks of latents, we identify the latents up to those blocks. We also show that if these perturbation blocks overlap, we identify latents up to the smallest blocks shared across perturbations. Consequently, if there are blocks that intersect in one latent variable only, then such latents are identified up to permutation and scaling. We propose a natural estimation procedure based on this theory and illustrate it on low-dimensional synthetic and image-based experiments.
翻译:代表性学习理论旨在构建一些方法,在最小域知识或任何监督来源的情况下,可以将生成数据的过程转换为最小域知识或任何监督来源。多数先前的方法要求对潜在变量进行强有力的分布假设,而监管薄弱(诸如时间戳等辅助信息)以提供可验证的识别保证。在这项工作中,我们表明,如果一个人对潜在变量(例如:在强化学习环境中,通过对潜在变量的微小扰动产生的观测,人们的监视力不力,那么在强化学习环境中,行动移动单个图案的识别在未知的持续潜在分布下是可以实现的。我们表明,如果扰动仅对相互排斥的潜伏区块适用,我们就会发现这些潜伏。我们还表明,如果这些扰动区块相互重叠,我们就会发现最小的潜伏区块,从而将一个潜在变量相互交叉,然后将这种潜伏区块确定为可变形和变形。我们根据这一理论提出一个自然估计程序,并以低维合成和图像实验为基础加以说明。