In cell line perturbation experiments, a collection of cells is perturbed with external agents (e.g. drugs) and responses such as protein expression measured. Due to cost constraints, only a small fraction of all possible perturbations can be tested in vitro. This has led to the development of computational (in silico) models which can predict cellular responses to perturbations. Perturbations with clinically interesting predicted responses can be prioritized for in vitro testing. In this work, we compare causal and non-causal regression models for perturbation response prediction in a Melanoma cancer cell line. The current best performing method on this data set is Cellbox which models how proteins causally effect each other using a system of ordinary differential equations (ODEs). We derive a closed form solution to the Cellbox system of ODEs in the linear case. These analytic results facilitate comparison of Cellbox to regression approaches. We show that causal models such as Cellbox, while requiring more assumptions, enable extrapolation in ways that non-causal regression models cannot. For example, causal models can predict responses for never before tested drugs. We illustrate these strengths and weaknesses in simulations. In an application to the Melanoma cell line data, we find that regression models outperform the Cellbox causal model.
翻译:在细胞扰动实验中,细胞的集合与外部物剂(如药物)和蛋白质表达式等反应相扰。由于成本限制,所有可能的扰动反应只有一小部分可以在体外测试。这导致了计算(硅)模型的开发,这些模型可以预测细胞对扰动的反应。通过临床有趣的预测反应的扰动可以优先用于体外测试。在这项工作中,我们比较了在美兰玛癌症细胞线上进行扰动反应预测的因果和非因果回归模型。由于成本限制,目前这一数据集的最佳运行方法是用普通差异方程式(ODs)来模拟蛋白质对彼此产生因果效应的细胞盒框。我们在线性案例中为ODE的细胞箱系统开发了一种封闭的形式解决方案。这些分析结果有助于将细胞箱与回归方法进行比较。我们展示了诸如Cellbox等因果模型,同时需要更多的假设,能够以非致癌回归模型所不能的方式进行外推导。例如,因果模型可以预测出非致癌性回归模型的外推论。例如,在模型中,因果模型中,我们可以预测在模拟中,我们在试验中,我们可以先先先先测试后推算。我们可以预测这些结果模型中,我们,我们可以预测到这些模型会分析。我们用这些结果模型会分析。