We propose a numerical accountant for evaluating the tight $(\varepsilon,\delta)$-privacy loss for algorithms with discrete one dimensional output. The method is based on the privacy loss distribution formalism and it uses the recently introduced fast Fourier transform based accounting technique. We carry out an error analysis of the method in terms of moment bounds of the privacy loss distribution which leads to rigorous lower and upper bounds for the true $(\varepsilon,\delta)$-values. As an application, we present a novel approach to accurate privacy accounting of the subsampled Gaussian mechanism. This completes the previously proposed analysis by giving strict lower and upper bounds for the privacy parameters. We demonstrate the performance of the accountant on the binomial mechanism and show that our approach allows decreasing noise variance up to 75 percent at equal privacy compared to existing bounds in the literature. We also illustrate how to compute tight bounds for the exponential mechanism applied to counting queries.
翻译:我们建议用一个数字会计来评估具有离散一维输出的算法的美元( varepsilon,\ delta) $- privacy 损失。 这种方法基于隐私损失分配形式, 并使用最近引入的快速 Fourier 变换会计技术。 我们从隐私损失分配的瞬间范围对方法进行错误分析, 从而导致真实的$( varepsilon,\ delta) 值的严格下限和上限。 作为应用程序, 我们展示了一种新颖的方法, 用于对子标集的高斯机制进行准确的私隐核算。 通过对隐私参数给予严格的下限和上限来完成先前提出的分析。 我们展示了会计在二流机制上的性能, 并表明我们的方法可以将相同隐私的噪音降低到75%, 与文献中的现有界限相比。 我们还说明如何为用于计算查询的指数机制计算严格界限。