We propose a numerical accountant for evaluating the tight $(\varepsilon,\delta)$-privacy loss for algorithms with discrete one dimensional output. The method is based on the privacy loss distribution formalism and it uses the recently introduced fast Fourier transform based accounting technique. We carry out an error analysis of the method in terms of moment bounds of the privacy loss distribution which leads to rigorous lower and upper bounds for the true $(\varepsilon,\delta)$-values. As an application, we present a novel approach to accurate privacy accounting of the subsampled Gaussian mechanism. This completes the previously proposed analysis by giving strict lower and upper bounds for the privacy parameters. We demonstrate the performance of the accountant on the binomial mechanism and show that our approach allows decreasing noise variance up to 75 percent at equal privacy compared to existing bounds in the literature. We also illustrate how to compute tight bounds for the exponential mechanism applied to counting queries.


翻译:我们建议用一个数字会计来评估具有离散一维输出的算法的美元( varepsilon,\ delta) $- privacy 损失。 这种方法基于隐私损失分配形式, 并使用最近引入的快速 Fourier 变换会计技术。 我们从隐私损失分配的瞬间范围对方法进行错误分析, 从而导致真实的$( varepsilon,\ delta) 值的严格下限和上限。 作为应用程序, 我们展示了一种新颖的方法, 用于对子标集的高斯机制进行准确的私隐核算。 通过对隐私参数给予严格的下限和上限来完成先前提出的分析。 我们展示了会计在二流机制上的性能, 并表明我们的方法可以将相同隐私的噪音降低到75%, 与文献中的现有界限相比。 我们还说明如何为用于计算查询的指数机制计算严格界限。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
专知会员服务
53+阅读 · 2020年9月7日
专知会员服务
162+阅读 · 2020年1月16日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】视觉惯性里程计的信息稀疏化(IROS-2018)
泡泡机器人SLAM
9+阅读 · 2018年12月31日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月19日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】视觉惯性里程计的信息稀疏化(IROS-2018)
泡泡机器人SLAM
9+阅读 · 2018年12月31日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员