Last passage times arise in a number of areas of applied probability, including risk theory and degradation models. Such times are obviously not stopping times since they depend on the whole path of the underlying process. We consider the problem of finding a stopping time that minimises the $L^1$-distance to the last time a spectrally negative L\'evy process $X$ is below zero. Examples of related problems in a finite horizon setting for processes with continuous paths are Du Toit et al. (2008) and Glover and Hulley (2014), where the last zero is predicted for a Brownian motion with drift, and for a transient diffusion, respectively. As we consider the infinite horizon setting, the problem is interesting only when the L\'evy process drifts to $\infty$ which we will assume throughout. Existing results allow us to rewrite the problem as a classic optimal stopping problem, i.e. with an adapted payoff process. We use a direct method to show that an optimal stopping time is given by the first passage time above a level defined in terms of the median of the convolution with itself of the distribution function of $-\inf_{t\geq 0}X_t$. We also characterise when continuous and/or smooth fit holds.
翻译:在应用概率的若干领域,包括风险理论和降解模型,最后的距离出现于一些应用概率领域,包括风险理论和降解模型。这些时间显然不是停留时间,因为它们取决于基础过程的整个路径。我们考虑的问题是寻找一个停止时间,将1美元至最后一时间将光谱负值L\'evy过程的距离最小化为1美元,X美元低于零。在具有连续路径的进程的有限地平线设置中,Du Toit等人(2008年)和Glover和Hulley(2014年)等相关问题的例子,在那里,分别预测布朗的漂移运动和瞬时扩散为最后零。在我们考虑无限的地平面设置时,只有当L\'evy过程漂浮到我们将全程假定的1美元/infty值时,问题才有趣。现有结果允许我们重新将问题改写为典型的最佳停止问题,即调整支付过程。我们使用直接的方法表明,在持续/XQq}时,最理想的停止时间是超过以美元/xgexxxxxx(我们是否保持平稳/xxq) 的递增的递增的中位函数。