If a Large Language Model (LLM) answers "yes" to the question "Are mountains tall?" then does it know what a mountain is? Can you rely on it responding correctly or incorrectly to other questions about mountains? The success of Large Language Models (LLMs) indicates they are increasingly able to answer queries like these accurately, but that ability does not necessarily imply a general understanding of concepts relevant to the anchor query. We propose conceptual consistency to measure a LLM's understanding of relevant concepts. This novel metric measures how well a model can be characterized by finding out how consistent its responses to queries about conceptually relevant background knowledge are. To compute it we extract background knowledge by traversing paths between concepts in a knowledge base and then try to predict the model's response to the anchor query from the background knowledge. We investigate the performance of current LLMs in a commonsense reasoning setting using the CSQA dataset and the ConceptNet knowledge base. While conceptual consistency, like other metrics, does increase with the scale of the LLM used, we find that popular models do not necessarily have high conceptual consistency. Our analysis also shows significant variation in conceptual consistency across different kinds of relations, concepts, and prompts. This serves as a step toward building models that humans can apply a theory of mind to, and thus interact with intuitively.


翻译:如果大语言模型(LLM)回答“是”“山高吗?”那么它知道什么是山吗?你能依靠它正确或错误地回答关于山的其他问题吗?大语言模型(LLMS)的成功表明它们越来越能够准确地回答这样的问题,但这种能力并不一定意味着对与锚盘查询有关的概念的普遍理解。我们提出概念一致性以衡量LLM对相关概念的理解。这种新颖的衡量尺度如何通过找出其对概念相关背景知识的查询的一致性来说明模型的特征。我们通过在知识库中从概念之间取取取背景知识,然后试图预测模型对背景知识中定位查询的响应。我们用 CSQA 数据集和概念网络知识库来调查当前LLMs在常识推理中的表现。虽然概念一致性与其他衡量尺度一样,随着LLM所使用的规模的提高,我们发现流行模型不一定具有高度的概念一致性。我们的分析还表明,在概念上的一致性方面,在各种概念和概念互动关系中,可以快速地建立概念概念的一致性。

1
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
41+阅读 · 2022年6月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员