State-of-the-art neural networks with early exit mechanisms often need considerable amount of training and fine tuning to achieve good performance with low computational cost. We propose a novel early exit technique, Early Exit Class Means (E$^2$CM), based on class means of samples. Unlike most existing schemes, E$^2$CM does not require gradient-based training of internal classifiers and it does not modify the base network by any means. This makes it particularly useful for neural network training in low-power devices, as in wireless edge networks. We evaluate the performance and overheads of E$^2$CM over various base neural networks such as MobileNetV3, EfficientNet, ResNet, and datasets such as CIFAR-100, ImageNet, and KMNIST. Our results show that, given a fixed training time budget, E$^2$CM achieves higher accuracy as compared to existing early exit mechanisms. Moreover, if there are no limitations on the training time budget, E$^2$CM can be combined with an existing early exit scheme to boost the latter's performance, achieving a better trade-off between computational cost and network accuracy. We also show that E$^2$CM can be used to decrease the computational cost in unsupervised learning tasks.


翻译:具有早期退出机制的先进神经网络往往需要大量的培训和微调,才能以低计算成本取得良好业绩。我们提议基于类样方法的新型早期退出技术,即早期退出类方法(E$2$CM )。与大多数现行计划不同,E$2$CM并不要求对内部分类人员进行基于梯度的培训,也不以任何方式修改基础网络。这使得它特别有助于低功率装置的神经网络培训,如无线边缘网络。我们评估了E2$CM在移动网络3、高效网络、ResNet等各种基本神经网络的绩效和间接费用,以及CIFAR-100、图像网络和KMNIST等数据集。我们的结果显示,根据固定的培训预算,E2$CM比现有的早期退出机制更加准确。此外,如果培训预算没有限制,E2$CM可以与现有的提前退出计划相结合,以提高后者的绩效,实现更好的贸易成本和成本计算方法之间的精确度。我们还可以显示,在计算成本和网络之间实现更好的贸易成本的降低。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Complexity of Representations in Deep Learning
Arxiv
0+阅读 · 2022年9月1日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员