In this work, we aim to enhance the system robustness of end-to-end automatic speech recognition (ASR) against adversarially-noisy speech examples. We focus on a rigorous and empirical "closed-model adversarial robustness" setting (e.g., on-device or cloud applications). The adversarial noise is only generated by closed-model optimization (e.g., evolutionary and zeroth-order estimation) without accessing gradient information of a targeted ASR model directly. We propose an advanced Bayesian neural network (BNN) based adversarial detector, which could model latent distributions against adaptive adversarial perturbation with divergence measurement. We further simulate deployment scenarios of RNN Transducer, Conformer, and wav2vec-2.0 based ASR systems with the proposed adversarial detection system. Leveraging the proposed BNN based detection system, we improve detection rate by +2.77 to +5.42% (relative +3.03 to +6.26%) and reduce the word error rate by 5.02 to 7.47% on LibriSpeech datasets compared to the current model enhancement methods against the adversarial speech examples.


翻译:在这项工作中,我们的目标是针对对抗性噪音言论实例,提高端到端自动语音识别(ASR)的系统坚固度,我们侧重于严格和经验经验的“封闭式模拟对抗性稳健性”设置(例如,在装置上或云层应用中);对抗性噪音只能通过封闭式优化(例如,进化和零级估计)产生,而不能直接获取定向ASR模型的梯度信息;我们提议建立一个以先进的巴耶西亚神经网络(BNN)为基础的高级对抗性探测仪(BNN),该探测器可以模拟适应性对抗性对立性干扰和差异测量的潜在分布;我们进一步模拟以拟议对抗性探测系统为基础的RNNT Transduker、Consuder和Wav2vec-2.0为基础的ASR系统的部署情景;利用拟议的BNNN的探测系统,我们将探测率提高+2.77至+5.42%(对应的+3.03至+6.26%),并将LibSpeech语音数据元错误率降低5.02至7.47%,对比目前的增强性模型方法。

0
下载
关闭预览

相关内容

语音识别是计算机科学和计算语言学的一个跨学科子领域,它发展了一些方法和技术,使计算机可以将口语识别和翻译成文本。 它也被称为自动语音识别(ASR),计算机语音识别或语音转文本(STT)。它整合了计算机科学,语言学和计算机工程领域的知识和研究。
专知会员服务
44+阅读 · 2020年10月31日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
从Bayesian Deep Learning到Adversarial Robustness新范式
PaperWeekly
0+阅读 · 2021年12月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
12+阅读 · 2020年12月10日
Phase-aware Speech Enhancement with Deep Complex U-Net
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
从Bayesian Deep Learning到Adversarial Robustness新范式
PaperWeekly
0+阅读 · 2021年12月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员