Weak gravitational lensing mass maps play a crucial role in understanding the evolution of structures in the universe and our ability to constrain cosmological models. The prediction of these mass maps is based on expensive N-body simulations, which can create a computational bottleneck for cosmological analyses. Modern deep generative models, such as Generative Adversarial Networks (GAN), have demonstrated their potential to achieve this goal. Most existing GAN approaches produce simulations for a fixed value of the cosmological parameters, which limits their practical applicability. We propose a novel conditional GAN model that is able to generate mass maps for any pair of matter density $\Omega_m$ and matter clustering strength $\sigma_8$, parameters which have the largest impact on the evolution of structures in the universe. Our results show that our conditional GAN can interpolate efficiently within the space of simulated cosmologies, and generate maps anywhere inside this space with good visual quality high statistical accuracy. We perform an extensive quantitative comparison of the N-body and GAN -generated maps using a range of metrics: the pixel histograms, peak counts, power spectra, bispectra, Minkowski functionals, correlation matrices of the power spectra, the Multi-Scale Structural Similarity Index (MS-SSIM) and our equivalent of the Fr\'echet Inception Distance (FID). We find a very good agreement on these metrics, with typical differences are <5% at the centre of the simulation grid, and slightly worse for cosmologies at the grid edges. The agreement for the bispectrum is slightly worse, on the <20% level. This contribution is a step towards building emulators of mass maps directly, capturing both the cosmological signal and its variability. We make the code and the data publicly available: https://renkulab.io/gitlab/nathanael.perraudin/darkmattergan


翻译:微弱重力透镜质量图在理解宇宙结构的演变以及我们限制宇宙模型的能力方面发挥着关键作用。 这些质量图的预测以昂贵的N-bo体模拟为基础,这可以为宇宙分析创造计算瓶颈。 现代深层基因模型, 如General Aversarial Network (GAN) 已经展示了它们实现此目标的潜力。 大多数现有的GAN方法模拟了宇宙参数的固定值,这限制了它们的实际适用性。 我们提出了一个新的有条件的GAN模型,它能够为任何一对物质密度 $\\Omega_merage_m mologies 和质集力强度 $\sgma_8$, 这可以对宇宙结构的进化产生最大的影响。 我们的有条件GAN可以在模拟的宇宙空间空间内高效地进行干涉, 并在空间内绘制地图, 具有较高的视觉质量的精确度。 我们对N-bodyal 和GAN- 生成的地图进行广泛的定量比较, 使用一系列的量度指标: 等量的Siral commal commal deal deal deal missional deal demodal missional deal deal missional drealations the the the the missional deal deal deal deal deal demodal deal deal demomental demodal demodal demodaldal disal dealsaldaldaldaldaldaldalsaldaldaldalsalsaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldals 。

0
下载
关闭预览

相关内容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移动Ad hoc和传感器系统IEEE国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/mass/index.html
专知会员服务
42+阅读 · 2020年12月18日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
68+阅读 · 2020年10月24日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
0+阅读 · 2021年6月28日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员