In this paper, we present an end-to-end attention-based convolutional recurrent autoencoder (AB-CRAN) network for data-driven modeling of wave propagation phenomena. The proposed network architecture relies on the attention-based recurrent neural network (RNN) with long short-term memory (LSTM) cells. To construct the low-dimensional learning model, we employ a denoising-based convolutional autoencoder from the full-order snapshots given by time-dependent hyperbolic partial differential equations for wave propagation. To begin, we attempt to address the difficulty in evolving the low-dimensional representation in time with a plain RNN-LSTM for wave propagation phenomenon. We build an attention-based sequence-to-sequence RNN-LSTM architecture to predict the solution over a long time horizon. To demonstrate the effectiveness of the proposed learning model, we consider three benchmark problems namely one-dimensional linear convection, nonlinear viscous Burgers, and two-dimensional Saint-Venant shallow water system. Using the time-series datasets from the benchmark problems, our novel AB-CRAN architecture accurately captures the wave amplitude and preserves the wave characteristics of the solution for long time horizons. The attention-based sequence-to-sequence network increases the time-horizon of prediction by five times compared to the plain RNN-LSTM. Denoising autoencoder further reduces the mean squared error of prediction and improves the generalization capability in the parameter space.


翻译:在本文中,我们展示了一个基于端到端关注的共振常态自动编码器(AB-CRAN)网络,用于以数据驱动模式模拟波传播现象。拟议的网络结构依赖于基于关注的具有长期短期内存(LSTM)细胞的经常神经网络(RNN),以长期短期内存(LSTM)细胞为基础。为了构建低维学习模型,我们从基于时间的双曲双曲偏差部分差方程式为波传播提供的全端直线自动编码器(AB-CRAN)网络(AB-CRAN)网络。开始,我们试图用普通波传播现象的普通 RNN-LSTM 模型来解决在逐渐演变低维度代表度代表度代表度代表度时的难度。我们建立了一个基于关注的序列序列序列序列-序列-序列-RNNNNS-LSTM 结构,以预测长期内的解决办法。为了证明拟议学习模型的有效性,我们考虑三个基准问题,即一维线直线相连接、非直线IMTM Burgers 和二维基S-Vennial 浅水系系统系统。利用基准问题的时间序列数据序列数据设置,我们的新AB-CR-CR-CR-CR-CR-CR-CRVLS-CRVLA-CRS-CLS-CLS-S-CLS-CLS-s-s-CLS-S-S-CLS-S-S-S-S-S-S-CLV-S-CLVAL-S-CLV-CLVLV-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-CLV-CLVLVLVD-S-S-S-S-S-S-S-CLV-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员