Differentially private analysis of graphs is widely used for releasing statistics from sensitive graphs while still preserving user privacy. Most existing algorithms however are in a centralized privacy model, where a trusted data curator holds the entire graph. As this model raises a number of privacy and security issues -- such as, the trustworthiness of the curator and the possibility of data breaches, it is desirable to consider algorithms in a more decentralized local model where no server holds the entire graph. In this work, we consider a local model, and present algorithms for counting subgraphs -- a fundamental task for analyzing the connection patterns in a graph -- with LDP (Local Differential Privacy). For triangle counts, we present algorithms that use one and two rounds of interaction, and show that an additional round can significantly improve the utility. For $k$-star counts, we present an algorithm that achieves an order optimal estimation error in the non-interactive local model. We provide new lower-bounds on the estimation error for general graph statistics including triangle counts and $k$-star counts. Finally, we perform extensive experiments on two real datasets, and show that it is indeed possible to accurately estimate subgraph counts in the local differential privacy model.
翻译:对图表的不同私人分析被广泛用于从敏感图表中释放统计数据,同时仍然保护用户隐私。但是,大多数现有的算法都是在中央隐私模型中,由受信任的数据管理员掌握整个图表。由于这一模型引起了一些隐私和安全问题 -- -- 例如,保管员的可信赖性以及数据破坏的可能性,因此最好在没有服务器持有整个图表的更分散的地方模型中考虑算法。在这项工作中,我们考虑一个本地模型,并提出计算子图的算法 -- -- 这是在图表中分析连接模式的一项基本任务 -- -- 与LDP(地方差异隐私)分析。对于三角计算,我们提出使用一、两轮互动的算法,并表明额外一轮算法可以大大改善效用。对于美元星的计算,我们提出一种算法,在非互动性本地模型中实现一个有定序的最佳估计错误。我们为包括三角数和美元星计数在内的一般图形统计的估算错误提供了新的下限。最后,我们对两个真实数据集(地方数据集模型)进行广泛的实验,并表明有可能准确估计当地参数的保密性。