Hyperspectral images (HSI) consist of rich spatial and spectral information, which can potentially be used for several applications. However, noise, band correlations and high dimensionality restrict the applicability of such data. This is recently addressed using creative deep learning network architectures such as ResNet, SSRN, and A2S2K. However, the last layer, i.e the classification layer, remains unchanged and is taken to be the softmax classifier. In this article, we propose to use a watershed classifier. Watershed classifier extends the watershed operator from Mathematical Morphology for classification. In its vanilla form, the watershed classifier does not have any trainable parameters. In this article, we propose a novel approach to train deep learning networks to obtain representations suitable for the watershed classifier. The watershed classifier exploits the connectivity patterns, a characteristic of HSI datasets, for better inference. We show that exploiting such characteristics allows the Triplet-Watershed to achieve state-of-art results in supervised and semi-supervised contexts. These results are validated on Indianpines (IP), University of Pavia (UP), Kennedy Space Center (KSC) and University of Houston (UH) datasets, relying on simple convnet architecture using a quarter of parameters compared to previous state-of-the-art networks. The source code for reproducing the experiments and supplementary material (high resolution images) is available at https://github.com/ac20/TripletWatershed Code.


翻译:超光谱图像(HSI)由丰富的空间和光谱信息组成,可以用于若干应用。然而,噪音、带关联和高维度限制了这些数据的可应用性。最近利用ResNet、SSRN和A2S2K等创造性深层次学习网络架构(ResNet、SSRN和A2S2K等)来解决这个问题。然而,最后一个层,即分类层,保持不变,并被视为软式摩西分类器。在本篇文章中,我们提议使用一个分水层分类器。水层分类器将来自数学文理学的流域操作器扩展为分类。在其香草形式中,流域分类器没有任何可训练的参数。在本篇文章中,我们提出一种新的方法来培训深层学习网络以获得适合流域分类仪的演示。分水层分类器利用连接模式(HSI数据集的特征),以更好地推断。我们表明,利用这些特性使三流水层网可以在监管和半超导型环境中取得州级成果。这些结果在Inspinpinpinnes(IP)上,Pasiralalal-comfial comfial comfiles-comfial ex ex ex comfiles) 校略大学/Creal Creal Creal creal clasmal Cental-Cental 数据库, 和基础中心(Prealmaxal-st-st) comma) acaldal-st-st-stal-stational-stationalmaildal-st-st-st-st-st-station-stationalpalpal) code) acilutus.

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
61+阅读 · 2020年3月19日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
113+阅读 · 2019年12月13日
图像处理:从 bilateral filter 到 HDRnet
极市平台
30+阅读 · 2019年8月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月23日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
图像处理:从 bilateral filter 到 HDRnet
极市平台
30+阅读 · 2019年8月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员