This paper describes a hybrid system for WSD, presented to the English all-words and lexical-sample tasks, that relies on two different unsupervised approaches. The first one selects the senses according to mutual information proximity between a context word a variant of the sense. The second heuristic analyzes the examples of use in the glosses of the senses so that simple syntactic patterns are inferred. This patterns are matched against the disambiguation contexts. We show that the first heuristic obtains a precision and recall of .58 and .35 respectively in the all words task while the second obtains .80 and .25. The high precision obtained recommends deeper research of the techniques. Results for the lexical sample task are also provided.
翻译:本文描述了向英文全字和词汇抽样任务介绍的WSD混合系统,该系统依赖两种不同而不受监督的方法。第一个系统根据上下文词与感官变体之间的相互信息接近性选择感官。第二个系统分析感官图象中的使用实例,以便推断简单的综合学模式。这个模式与模糊性环境相匹配。我们显示,第一个Heuristic在所有单词任务中分别得到了.58和35的精确度和回溯,而第二个则获得了.80和25。获得的高度精确度建议对技术进行更深入的研究。还提供了词汇抽样任务的结果。