Unlike English letters, Chinese characters have rich and specific meanings. Usually, the meaning of a word can be derived from its constituent characters in some way. Several previous works on syntactic parsing propose to annotate shallow word-internal structures for better utilizing character-level information. This work proposes to model the deep internal structures of Chinese words as dependency trees with 11 labels for distinguishing syntactic relationships. First, based on newly compiled annotation guidelines, we manually annotate a word-internal structure treebank (WIST) consisting of over 30K multi-char words from Chinese Penn Treebank. To guarantee quality, each word is independently annotated by two annotators and inconsistencies are handled by a third senior annotator. Second, we present detailed and interesting analysis on WIST to reveal insights on Chinese word formation. Third, we propose word-internal structure parsing as a new task, and conduct benchmark experiments using a competitive dependency parser. Finally, we present two simple ways to encode word-internal structures, leading to promising gains on the sentence-level syntactic parsing task.
翻译:与英文字母不同, 中文字符具有丰富和具体的含义。 通常, 单词的含义可以以某种方式从其组成字符中得出。 先前的几项合成分析提议对浅单词内部结构进行批注, 以便更好地利用字符级信息 。 这项工作建议将中国单词的深层内部结构建模为依赖树, 并配有11个标签, 以区分合成关系 。 首先, 根据新编的批注指南, 我们手写一个单词内部结构树库( WIST), 由中国彭树银行的30K多个字组成。 为了保证质量, 每个单词都由两个注解者独立附加说明, 由第三个高级批注者处理不一致之处。 其次, 我们对WIST进行详细和有趣的分析, 以揭示对中文单词构成的洞见。 第三, 我们提出单词内部结构的分类是一项新任务, 并使用竞争性的依赖分析器进行基准实验。 最后, 我们提出了两种简单的词内部结构编码方法, 从而有望在句级合成拼写任务上取得成果 。