Bayesian Networks (BNs) have become increasingly popular over the last few decades as a tool for reasoning under uncertainty in fields as diverse as medicine, biology, epidemiology, economics and the social sciences. This is especially true in real-world areas where we seek to answer complex questions based on hypothetical evidence to determine actions for intervention. However, determining the graphical structure of a BN remains a major challenge, especially when modelling a problem under causal assumptions. Solutions to this problem include the automated discovery of BN graphs from data, constructing them based on expert knowledge, or a combination of the two. This paper provides a comprehensive review of combinatoric algorithms proposed for learning BN structure from data, describing 61 algorithms including prototypical, well-established and state-of-the-art approaches. The basic approach of each algorithm is described in consistent terms, and the similarities and differences between them highlighted. Methods of evaluating algorithms and their comparative performance are discussed including the consistency of claims made in the literature. Approaches for dealing with data noise in real-world datasets and incorporating expert knowledge into the learning process are also covered.


翻译:在过去几十年里,贝叶斯网络(BNs)作为一种工具,在医学、生物学、流行病学、经济学和社会科学等各个领域的不确定性下进行推理,越来越受欢迎。这在现实世界地区尤其如此,我们试图根据假设证据回答复杂问题,以确定干预行动。然而,确定巴伊西亚网络的图形结构仍是一个重大挑战,特别是在根据因果关系假设模拟问题时。这个问题的解决方案包括从数据中自动发现BN图,以专家知识为基础构建这些图,或将两者结合起来。本文件全面审查了为从数据中学习BN结构而提出的组合式算法,描述了61种算法,包括原型、完善和最新方法。每种算法的基本方法都以前后一致的用语加以描述,突出了它们之间的相似和不同之处。讨论了评估算法及其比较性的方法,包括文献中索赔的一致性。还探讨了在现实世界数据集中处理数据噪音和将专家知识纳入学习过程的方法。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
126+阅读 · 2020年9月6日
A Survey on Bayesian Deep Learning
Arxiv
60+阅读 · 2020年7月2日
Deep Learning for 3D Point Clouds: A Survey
Arxiv
3+阅读 · 2019年12月27日
Arxiv
17+阅读 · 2019年3月28日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
5+阅读 · 2017年7月25日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
相关论文
Arxiv
0+阅读 · 2021年11月12日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
126+阅读 · 2020年9月6日
A Survey on Bayesian Deep Learning
Arxiv
60+阅读 · 2020年7月2日
Deep Learning for 3D Point Clouds: A Survey
Arxiv
3+阅读 · 2019年12月27日
Arxiv
17+阅读 · 2019年3月28日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
5+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员