This study presents a two-step Lagrange-Galerkin scheme for the shallow water equations with a transmission boundary condition (TBC), which is of second order in time and maintains the two advantages of the Lagrange-Galerkin methods, i.e., the CFL-free robustness for convection-dominated problems and the symmetry of the resulting coefficient matrices for the system of linear equations. The two material derivatives in non-conservative and conservative forms are discretized based on the ideas of the two-step backward difference formula of degree two along the trajectory of the fluid particle. Numerical results by the scheme are presented. Firstly, the experimental order of convergence of the scheme is shown to see the second-order accuracy in time. Secondly, the effect of the TBC on a simple domain is discussed; the artificial reflections are kept from the Dirichlet boundaries and removed significantly from the transmission boundaries. Thirdly, the scheme is applied to a complex practical domain, i.e., the Bay of Bengal region, which is non-convex and includes islands. The effect of the TBC is discussed again for the complex domain; the artificial reflections are removed significantly from transmission boundaries, which are set on open sea boundaries. Based on the numerical results, it is revealed that the scheme has the following properties; (i) the same advantages of Lagrange-Galerkin methods (the CFL-free robustness and the symmetry of the matrices); (ii) second-order accuracy in time; (iii) mass preservation of the function for the water level from the reference height (until the contact with the transmission boundaries of the wave); and (iv) no significant artificial reflection from the transmission boundaries.
翻译:此项研究为浅水方程式提供了一个分两步的 Lagrange- Galerkin 方案, 并具有传输边界条件的浅水方程式( TBC) 的两步后向偏差公式( TBC), 时间顺序为第二步, 并保持了Lagrange- Galerkin 方法的两种优点, 即: 平流问题无 CFL 的稳健性, 线性方程式系统由此产生的系数矩阵的对称性。 非保守和保守形式的两种物质衍生物根据流体粒子轨迹( TBC ) 双向后向偏移位位公式的构想而分离开。 方案给出了数值顺序的准确性结果。 首先, 方案趋近的实验性趋近顺序显示第二步的精确度。 其次, TBC 在简单域域中, 人造反射法从Drichtrealtrial 直径( 直径的反向) 和直径直径的反射法( C) 直径直径的反射法系为直径直径直径, 直径的反射法系 直径 直径 直径 直径 。 直径 直的反向的反射法系 直径 直向的反射法 直径, 直距 直 直距 直距 直距 直径距 直径 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直径 直径 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直