This paper is focused on the study of entropic regularization in optimal transport as a smoothing method for Wasserstein estimators, through the prism of the classical tradeoff between approximation and estimation errors in statistics. Wasserstein estimators are defined as solutions of variational problems whose objective function involves the use of an optimal transport cost between probability measures. Such estimators can be regularized by replacing the optimal transport cost by its regularized version using an entropy penalty on the transport plan. The use of such a regularization has a potentially significant smoothing effect on the resulting estimators. In this work, we investigate its potential benefits on the approximation and estimation properties of regularized Wasserstein estimators. Our main contribution is to discuss how entropic regularization may reach, at a lowest computational cost, statistical performances that are comparable to those of un-regularized Wasserstein estimators in statistical learning problems involving distributional data analysis. To this end, we present new theoretical results on the convergence of regularized Wasserstein estimators. We also study their numerical performances using simulated and real data in the supervised learning problem of proportions estimation in mixture models using optimal transport.
翻译:本文的重点是研究最佳运输中作为瓦森斯坦估测员滑动方法的最佳运输正规化问题,通过统计中近似和估计误差之间的典型权衡法,研究最佳运输中的最佳运输成本。瓦森斯坦估测员被定义为变异问题的解决办法,其客观功能涉及在概率计量之间使用最佳运输成本。这种估算员可以通过使用运输计划分配数据分析的正统版取代最佳运输成本,以此取代最佳运输成本。使用这种正规运输成本,对由此产生的估测员具有潜在的重大平稳影响。在这项工作中,我们研究了其对正常的瓦森斯坦估测员的近似和估计属性的潜在好处。我们的主要贡献是讨论以最低的计算成本,如何使温得正规化的统计工作达到可与非常规的瓦森斯坦估测员在涉及分配数据分析的统计学习问题中的类似水平。为此,我们介绍了正规的瓦瑟斯坦估测员的趋同性新理论结果。我们还利用所监督的混合物最佳学习比例的模拟和真实数据,研究其数字性表现。