This paper applies the gradient discretisation method (GDM) for fourth order elliptic variational inequalities. The GDM provides a new formulation of error estimates and a complete convergence analysis of several numerical methods. We show that the convergence is unconditional. Classical assumptions on data are only sufficient to establish the convergence results. These results are applicable for all schemes fall in the framework of GDM.
翻译:本文将梯度分解法(GDM)应用于第四级椭圆变异性不平等。GDM提供了新的误差估计公式和若干数字方法的完全趋同分析。我们表明,这种趋同是无条件的。关于数据的经典假设仅足以确定趋同结果。这些结果适用于所有属于GDM框架范围的计划。