Let $G$ be an unlabeled planar and simple $n$-vertex graph. {We present a succinct encoding of $G$ that provides induced-minor operations, i.e., edge contraction and vertex deletions. Any sequence of such operations is processed in $O(n)$ time.} In addition, the encoding provides constant time per element neighborhood access and degree queries. Using optional hash tables the encoding additionally provides constant {expected} time adjacency queries as well as an edge-deletion operation {(thus, all minor operations are supported)} such that any number of such edge deletions are computed in $O(n)$ {expected} time. Constructing the encoding requires $O(n)$ bits and $O(n)$ time. The encoding requires $\mathcal{H}(n) + o(n)$ bits of space with $\mathcal{H}(n)$ being the entropy of encoding a planar graph with $n$ vertices. Our data structure is based on the recent result of Holm et al.~[ESA 2017] who presented a linear time contraction data structure that allows to maintain parallel edges and works for labeled graphs, but uses $O(n \log n)$ bits of space. We combine the techniques used by Holm et al. with novel ideas and the succinct encoding of Blelloch and Farzan~[CPM 2010] for arbitrary separable graphs. Our result partially answers the question raised by Blelloch and Farzan if their encoding can be modified to allow modifications of the graph.
翻译:$G$ 是一个未贴标签的平面图和简单的 $n- verdex 平面图 。 { 我们展示了一个简洁的 $G$ 编码, 提供导引最小操作, 即 边缘收缩和顶端删除 。 任何此类操作的序列都以 $( n) 时间处理 。 } 此外, 该编码提供每个元素周围访问和度查询的固定时间 。 使用可选的 hah 表格, 该编码额外提供恒定 { h} 时间匹配查询 以及边边边端删除操作 { (ths, 所有小操作都得到支持 )}, 这样可以使用 $( n) $( n) 平面递增的 。 我们的数据结构以2010年的平面图的直线端值为基础, 并且用 ALMal- m 的平面图的直面图可以保留2010 。 我们的数据结构以2010年平面的平面图的平面结果 。