We call an objective function or algorithm symmetric with respect to an input if after swapping two parts of the input in any algorithm, the solution of the algorithm and the output remain the same. More formally, for a permutation $\pi$ of an indexed input, and another permutation $\pi'$ of the same input, such that swapping two items converts $\pi$ to $\pi'$, $f(\pi)=f(\pi')$, where $f$ is the objective function. After reviewing samples of the algorithms that exploit symmetry, we give several new ones, for finding lower-bounds, beating adversaries in online algorithms, designing parallel algorithms and data summarization. We show how to use the symmetry between the sampled points to get a lower/upper bound on the solution. This mostly depends on the equivalence class of the parts of the input that when swapped, do not change the solution or its cost.
翻译:如果在任何算法中互换输入的两部分后,如果算法和输出的解决方案保持不变,我们称之为输入的客观函数或算法对称。更正式地说,对于一个索引输入的调值$\pi$,以及同一输入的另一种调值$pi$,例如,将两个项目转换成$pi$=$pi$,美元(pi)=f(f)=f(f)$(f)$)是输入的客观函数。在审查利用对称法的算法样本后,我们给几个新的算法,以查找下限、在在线算法中击打对手、设计平行算法和数据对称。我们展示了如何使用抽样点之间的对称来获得解决方案的较低/上下限。这主要取决于转换时输入部分的等值类别,不改变解决方案或其成本。