In this paper, by introducing a reconstruction operator based on the Legendre moments, we construct a reduced discontinuous Galerkin (RDG) space that could achieve the same approximation accuracy but using fewer degrees of freedom (DoFs) than the standard discontinuous Galerkin (DG) space. The design of the ``narrow-stencil-based'' reconstruction operator can preserve the local data structure property of the high-order DG methods. With the RDG space, we apply the local discontinuous Galerkin (LDG) method with the implicit-explicit time marching for the nonlinear unsteady convection-diffusion-reaction equation, where the reduction of the number of DoFs allows us to achieve higher efficiency. In terms of theoretical analysis, we give the well-posedness and approximation properties for the reconstruction operator and the $L^2$ error estimate for the semi-discrete LDG scheme. Several representative numerical tests demonstrate the accuracy and the performance of the proposed method in capturing the layers.
翻译:暂无翻译