Natural language processing (NLP) technology has shown great commercial value in applications such as sentiment analysis. But NLP models are vulnerable to the threat of pirated redistribution, damaging the economic interests of model owners. Digital watermarking technology is an effective means to protect the intellectual property rights of NLP model. The existing NLP model protection mainly designs watermarking schemes by improving both security and robustness purposes, however, the security and robustness of these schemes have the following problems, respectively: (1) Watermarks are difficult to defend against fraudulent declaration by adversary and are easily detected and blocked from verification by human or anomaly detector during the verification process. (2) The watermarking model cannot meet multiple robustness requirements at the same time. To solve the above problems, this paper proposes a novel watermarking framework for NLP model based on the over-parameterization of depth model and the multi-task learning theory. Specifically, a covert trigger set is established to realize the perception-free verification of the watermarking model, and a novel auxiliary network is designed to improve the robustness and security of the watermarking model. The proposed framework was evaluated on two benchmark datasets and three mainstream NLP models, and the results show that the framework can successfully validate model ownership with 100% validation accuracy and advanced robustness and security without compromising the host model performance.


翻译:自然语言处理(NLP)技术在情绪分析等应用中显示出巨大的商业价值。但是,NLP模型很容易受到盗版再分配的威胁,破坏模型拥有者的经济利益。数字水标记技术是保护NLP模型知识产权的有效手段。现有的NLP模型保护主要通过改进安全和稳健性目的设计水标记计划,然而,这些计划的安全和稳健性分别存在下列问题:(1) 水标记难以抵御对手的欺诈性申报,在核查过程中很容易被人类或异常探测器探测到并阻止核查。 (2) 水标记模型无法同时满足多重稳健性要求。为解决上述问题,本文件提议了一个新的NLP模型水标记框架,其基础是深度模型和多功能学习理论,但具体地说,为了实现对水标记模型的无感知性核查,建立了一套隐蔽触发装置,并设计了一个新型辅助网络,以改善水标记模型的稳健性和安全性。拟议的基准框架以两种基准化模型和高级安全性模型为基础,可以成功地评估稳妥性模型和升级性模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年1月15日
Arxiv
21+阅读 · 2021年12月31日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
38+阅读 · 2020年3月10日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员