Learning nonlinear dynamics from aggregate data is a challenging problem because the full trajectory of each individual is not available, namely, the individual observed at one time may not be observed at the next time point, or the identity of individual is unavailable. This is in sharp contrast to learning dynamics with full trajectory data, on which the majority of existing methods are based. We propose a novel method using the weak form of Fokker Planck Equation (FPE) -- a partial differential equation -- to describe the density evolution of data in a sampled form, which is then combined with Wasserstein generative adversarial network (WGAN) in the training process. In such a sample-based framework we are able to learn the nonlinear dynamics from aggregate data without explicitly solving the partial differential equation (PDE) FPE. We demonstrate our approach in the context of a series of synthetic and real-world data sets.
翻译:从综合数据中学习非线性动态是一个具有挑战性的问题,因为没有每个个人的全部轨迹,也就是说,在下一个时间点可能无法观察到同一时间所观察到的个人,或者个人的身份无法找到。这与学习动态与全部轨迹数据形成鲜明对照,而现有大多数方法都以全部轨迹数据为基础。我们提出一种新颖的方法,使用微弱的Fokker Planck Eqquation(FPE)形式 -- -- 一种部分差异方程式 -- -- 来描述抽样形式的数据的密度演变,然后在培训过程中与Wasserstein 基因对抗网络(WGAN)相结合。在这种以样本为基础的框架内,我们能够从综合数据中学习非线性动态,而没有明确地解决部分差异方程式(PDE) FPE。我们用一系列合成和真实世界数据集来展示我们的方法。